
ECOLOGY AND BEHAVIOR

Modeling Spatial Variation of Russian Wheat Aphid Overwintering
Population Densities in Colorado Winter Wheat

SCOTT C. MERRILL,1,2 THOMAS O. HOLTZER,1 FRANK B. PEAIRS,1 AND PHILIP J. LESTER3

J. Econ. Entomol. 102(2): 533Ð541 (2009)

ABSTRACT The Russian wheat aphid, Diuraphis noxia (Kurdjumov), is a pest of small grain crops
that has caused hundreds of millions of dollars of damage since it was Þrst reported in the United States
in 1986. Much is known aboutD. noxia population dynamics during the spring and early summer when
most of the crop damage occurs, whereas little is known about the system during the overwintering
period. Using a spatially explicit model developed from Þeld observations in a wheat/fallow agro-
ecosystem, we sought for predictable variation in overwintering success of D. noxia based on envi-
ronmental factors such as topography and soil type. Successful modeling of densities ofD. noxiawould
facilitate early control efforts targeting locations where D. noxia successfully overwintered. D. noxia
density data were collected over 3 yr at two sites in eastern Colorado. The model incorporates
georeferenced data from soil surveys, topography, and satellite imagery as predictor variables. Our
approach links an information theoretic approach for model inference and model selection to
landscape ecology, allowing for the examination of multiple candidate models and variables within
each of the candidate models. Results were used to create trend surface models for D. noxia density
in winter wheat agroecosystems. The model has the potential for use in site speciÞc pesticide
applications. Using site speciÞc pesticide applications, pesticide inputs could be reduced by an
estimated 30%, reducing input costs to the producer, increasing natural enemy refuges, reducing
environmental contamination, augmenting pesticide resistance management practices, and reducing
exposure of agricultural workers.
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The Russian wheat aphid, Diuraphis noxia (Kurdju-
mov), is a major pest of wheat, Triticum aestivum L.,
and barley,Hordeum vulgare L. Damage estimates are
in excess of a billion dollars since their invasion into
the United States (Webster et al. 1994, Morrison and
Peairs 1998). There has been extensive research into
elucidating its population dynamics during the spring
and early summer, when most of the crop damage
occurs to the small grain crops. However, little has
been published regardingD. noxiaoverwintering pop-
ulation dynamics with the exception of two articles
(Messina et al. 1993, Armstrong and Peairs 1996). Quan-
titative, spatially explicit knowledge of the interaction
between D. noxia and their environment is limited,
indicative of a need for exploring variables that may
explain variation in D. noxia densities within the win-
ter wheat agroecosystem.

No male D. noxia have been reported from North
America. Consequently, D. noxia are believed to rely
on parthenogenic reproduction throughout the year,
and these aphids overwinter as adult females. During
the winter, D. noxia are relatively dormant but are

seen moving and feeding when conditions permit
(S.C.M., unpublished data). Because D. noxia repro-
duce parthenogenitically, using a telescoping gener-
ation strategy, population growth can be exceptionally
rapid (Burd et al. 1998). Stress on aphids, such as
caused by decreased host quality, leads to the pro-
duction of alateD. noxia forms and results in increased
dispersal (Baugh and Phillips 1991). One peak in D.
noxia movement occurs in the spring, which allows
dispersal to areas where D. noxia populations were
absent. However, by the time of most spring ßights
(which generally start in April), wheat is typically at
a late growth stage (F.B.P., unpublished data). When
D.noxia infest later growth stages they do substantially
less crop damage compared with infestations occur-
ring on early growth stages (Peairs et al. 2006). There-
fore, reduction of early season D. noxia densities
should prove more beneÞcial than controls under-
taken at a later date.

Some pest management strategies, such as shifting
planting date (Hammon et al. 1996), have been shown
to help reduce infestation levels, but most do not
adequately protect yield (Randolph et al. 2002, Lee et
al. 2005). Resistant wheat cultivars historically pro-
vided excellent crop protection, but with the advent
of numerous new D. noxia biotypes (e.g., Haley et al.
2004) all commercially available winter wheat culti-
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vars are currently susceptible toD. noxia feeding dam-
age and associated yield losses. Due to the develop-
ment of these biotypes, insecticides have once again
become the key management tactic in use on Colo-
rado wheat. However, a single pesticide application
generally costs �$25/ha. (Webster et al. 1994; F.B.P.,
unpublished data), which signiÞcantly reduces proÞt
margins in dryland winter wheat. Typically, whole
Þelds are treated with pesticides as a single unit based
on aphid density, which has a variety of associated
costs, including the indirect cost of leaving no within-
crop refuges for natural enemies. Spraying pesticides
across an entire Þeld would be most beneÞcial if aphid
densities were homogeneous. However, spatial homo-
geneity in aphid populations is atypical (Taylor 1984).
Thus, there are beneÞts to precision targeting of con-
trol efforts.

Precision agriculture can be highly beneÞcial in
agroecosystems that are not homogeneous because
delineated areas can be managed differently, depend-
ing upon management goals. The most common ap-
plication of precision agriculture is the development
of yield maps, which enable practices such as precision
fertilization or varying seeding rates within the Þeld
(Blackmore 1994). Precision agriculture concepts are
also used for insect management. Precision pest man-
agement systems, which are currently being under-
used, are the combined use of directed scouting and
site speciÞc management. For example, in Pennsylva-
nia, treating only the infested portions of potato Þelds
reduced the amount of pesticide needed to control the
Colorado potato beetle by 30Ð40% (Weisz et al. 1996).
A spatially explicit model of D. noxia densities would
greatly facilitate the development of tactics such as
directed scouting and site speciÞc management of D.
noxia.

NumerousvariablesmaybecorrelatedwithD.noxia
overwintering mortality and therefore be correlated
with the spatial heterogeneity observed in the density
ofD. noxia in the spring. Remotely sensed imagery has
successfully been used to detect D. noxia presence.
For example, in a greenhouse experiment Riedell and
Blackmer (1999) found excellent correlation between
remotely sensed wavelengths and D. noxia feeding.
Elliott et al. (2007) used a hyperspectral ground spec-
trometer to remotely sense D. noxia stress and inci-
dence. And Dvorak et al. (2004) used aircraft based
remotely sensed data to create vegetation indices,
which were correlated with the presence of D. noxia
in Þeld plots.

Topographic variables such as aspect and slope have
been found to inßuenceD.noxiapopulation dynamics.
For example, Hammon and Peairs (1992) found that
the south side of eastÐwest facing irrigation beds ac-
cumulated more degree-days than the north side of
the irrigation bed or either side of the northÐsouth
facing irrigation beds and consequently the south fac-
ing side had higher infestations of D. noxia in the
spring. Moreover, they found that Þelds with irrigation
beds with steep slopes had higher infestations than
Þelds with irrigation furrows with more gradual slopes.

The interaction between overwintering aphid mor-
tality and soil properties is an area that has seen lim-
ited, if any, research. However, it seems likely that soil
properties play an important role in overwintering
mortality. For example, aphid dispersal is affected by
soil color (Loebenstein and Raccah 1980, Gibson and
Rice 1989, Doring et al. 2004) and soil texture likely
affects moisture availability and aphid desiccation.

Our goal was to develop a spatially explicitD. noxia
density model to delineate D. noxia densities within
the winter wheat agroecosystem. Such a model could
beapplied togenerate riskassessmentmapspredicting
areas of highD. noxiadensities during the early spring.
We hypothesized that some of the within-Þeld vari-
ation in overwintering success is predictable based on
remotely sensed satellite imagery, topography, and
soil characteristics.

Materials and Methods

Sampling Design. Sites were established near Last
Chance, CO (39� 44� N 103� 48� W, approximately an
hour east of Denver, CO) and near Lamar, CO (37� 58�
N 102� 30� W, near the southeastern corner of CO),
which had disparate topographic and climatic vari-
ables and representative of the Colorado wheat pro-
duction environments. Each year �80 plots were es-
tablished at each Þeld site, which were georeferenced
using a Garmin GPSmap76S or a Garmin GPS 12 Map
(Garmin International, Olathe, KS). For the Þrst two
overwintering seasons (2001Ð2002 and 2002Ð2003),
plots were selected based on a stratiÞed random grid
design. The third season (2003Ð2004) was stratiÞed
across soil type because early analysis indicated that
soil type was an important variable. Plots consisted of
three consecutive rows (subplots) of dryland winter
wheat. Wheat planted by the farmer was removed
with a hoe. The winter wheat ÔTAM 107Õ was planted
at a rate of 2.45 g/m row. Water was added (at a rate
of 1 liter per subplot) to offset soil disturbance and to
increase wheat emergence. Because of the extremely
dry conditions that occurred during this study, subplot
length was reduced from one meter in the Þrst over-
wintering season to 0.30 m in the second and third
seasons to maximize the logistically available water
applied per subplot.

Subplots were infested in late fall withD.noxia from
the D. noxia biotype 1 colony at Colorado State Uni-
versity. All subplots were infested with �150D. noxia
per subplot, by using a Davis Inoculator (Davis and
Oswalt 1979). The sample design was intended to
obtain samples over 3 yr at two sites. Data were col-
lected over two sampling periods per site per year
allowing us to observe variation in the spatial distri-
bution ofD. noxia during the spring while maximizing
the available sampling resources. Data for one of two
sampling periods was not obtained in our second sea-
son at the Lamar Þeld site because of equipment fail-
ure, leaving 11 sampling sets (SS). To determine D.
noxia densities, tillers were removed from subplots on
two sample dates per site per spring, with the excep-
tion of the second season at the Lamar Þeld site (i.e.,
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only one sample set was obtained from Lamar in spring
2003). Sample design was for tillers to be removed at
a rate of six tillers per subplot. If tiller density was low
(e.g., from poor crop emergence), tillers were re-
moved to maximize the number of tillers obtained in
each sample period. For example, if only eight tillers
existed on a subplot during the Þrst sample period, half
of the tillers were removed allowing the second set of
four tillers to remain for sampling during the second
sample period. Tillers were clipped, placed into zip-
lock bags, and transported to Colorado State Univer-
sityÕs Agricultural Research Development and Educa-
tion Center (ARDEC, Fort Collins, CO). Tillers were
then removed from the ziplock bags and placed into
Berlese funnels for �24 h to extract the aphids for
counting under a dissecting microscope.D. noxia den-
sities were calculated per tiller. Subplot densities were
averaged to obtain a plot average (aphid density per
tiller). Plot densities were normalized using the log �
0.1 method. The Last Chance Þeld site sampling num-
bers and sampling dates were as follows: 158 sub-
plot samples were obtained on 23 March 2002, 175
subplot samples were obtained on 6 April 2002, 190 sub-
plot samples were obtained on 30 March 2003, 119 sub-
plot samples were obtained on 25 April 2003, 173 subplot
samples were obtained on 19 March 2004, and 153 sub-
plot samples were obtained on 13 April 2004. The
Lamar Þeld site sample numbers and sampling dates
were as follows: 187 subplot samples were obtained on
23 February 2002, 175 subplot samples were ob-
tained on 12 April 2002, 183 subplot samples were
obtained on 11 April 2003, 140 subplot samples were
obtained on 25 March 2004, and 114 subplot samples
were obtained on 25 April 2004. Subplot measure-
ments were averaged to obtain a whole plot average.
If any of the three subplot measurements per plot
were missing, data were averaged over the remaining
subplots. Over 3 yr at the two sites, subplot averaged
measurements yielded D. noxia densities at 641 plots.

This research made use of geographic information
systems (GIS), remote sensing, global positioning sys-
tems (GPS), and spatial statistical analysis. Three
types of predictor variables were used to determineD.
noxia densities: Landsat satellite imagery, topographic
variables, and soil characteristics.

Two sets of Landsat seven ETM� images per year
at each site were obtained, one in the spring between
sampling periods and one in the late fall or early winter
(e.g., typically �15 December). Image date was vari-
able due to the frequency of the satellite overpass
timing and the necessity of cloud-free imagery over
the Þeld site. Landsat ETM� 7 bands from the spring
are denoted with an (S), whereas bands obtained
during fall/winter are denoted with a (W). To exam-
ine vegetation, we developed a Normalized Differ-
ence Vegetation Index (NDVI) for each set of satellite
images. NDVI was calculated as a function of Landsat
Band 3 and Band 4: NDVI � [Band 4-Band 3]/[Bands
3 � 4]). The scan line corrector for the Landsat seven
satellite failure that occurred in the spring of 2003 did
not dramatically affect our project. In our study, the
failure only affected some of the data from the thermal

bands (Bands 6.1 and 6.2). That is, �7% of plot level
data during the last Þeld season from these bands were
affected. These missing data were treated as conven-
tional missing data during the analysis.

Topography layers were developed from a United
States Geological Survey 30-m digital elevation map
(DEM). All topography data layers were generated
with a 30-m grid resolution. Topography layers tested
are as follows: relative elevation, the measure of the
elevational distance (in meters) from the mean ele-
vation at the Þeld site. A Slope layer was developed
(measured in degrees) from the USGS 30-m DEM by
using the ArcGIS 9.1 (ESRI 1995Ð2007) slope tool. An
Aspect layer (measured in degrees from 0� to 360�)
was derived from the USGS 30-m DEM by using the
ArcGIS 9.1 (ESRI 1995Ð2007) aspect tool. A northÐ
south Aspect data layer was derived from the Aspect
data layer using the Raster Calculator function in
ArcGIS 9.1 (ESRI 1995Ð2007) with the function:
Float(Abs(180 � [Aspect])). This creates a continu-
ous variable from 0 to 180 with 0 directly north and 180
directly south. A Landshape data layer was created by
the ArcGIS 9.1 (ESRI 1995Ð2007) Raster Calculator
function: Focalmean ([DEM],Circle,3,nodata) �
[DEM]. This function calculates the mean elevation
value (i.e., from the DEM) in a circle with a three-cell
(90-m) radius around the georeferenced plot, then
subtracts that value from the elevation at the plot. The
resulting value describes the relative elevation of the
georeferenced plot to its surroundings.

Soil data were obtained from Colorado county soil
survey paper copies (USDAÐNRCS 2007) and digi-
tized into a GIS for each site. Developing soil char-
acteristic variables was difÞcult due to the scale of
variability seen in the Þeld. Therefore, soil series or
types based on the soil Musyms (i.e., map unit symbol)
were used as categorical surface grid layers. The fol-
lowing soil series (USDAÐNRCS 2007) were used in
this study: Wiley Series (�5000 acres on sites), Weld
Series (�300 acres on sites), Shingle Series (�500
acres on sites), Samsil Series (�1000 acres on sites),
Colby Series (�300 acres on sites), Baca Series (�400
acres on sites), Arvada Series (�200 acres on sites),
Adena Series (�900 acres on sites), Soil Type: Gul-
lied Land (�124 acres on sites), Soil Type: Loamy
Alluvial Land (�660 acres on sites), and Soil Type:
Alluvial Land Complex (�39 acres on sites).

Upon generation of the complete data set, there
were 36 predictor variables: landshape, slope, relative
elevation, aspect, north-south aspect, imagery from
spring and winter Landsat 7 ETM� imagery [Landsat
7 ETM� Bands and indices: Band 1 (450Ð515 nm),
Band 2 (525Ð605 nm), Band 3 (630Ð690 nm), Band 4
(750Ð900 nm), Band 5 (1500Ð1750 nm), Thermal
Bands 6.1 and 6.2 (10400Ð12500 nm), Band 7 (2090Ð
2950 nm), Panchromatic Band 8 (520Ð900 nm), and
the vegetation indices NDVI (S), NDVI (W)], and the
soil types (Shingle, Arvada, Samsil, LAL, Colby, Baca,
Weld, Wiley, Break, Gullied, and Adena). All GIS data
layers were projected to NAD 84 (North American
Datum of 1984).
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ModelDevelopment.The spatial location of eachD.
noxia samplewasused to identifyandextractpredictor
variables from the soil, topography, and satellite data
layers. GIS layers were normalized using the standard
formula (Xi � Minimum(X)/(MaximumX � Mini-
mumX)) for all data points i. All GIS layers were
normalized to values between 0 and 1. Normalization
allows for comparisons of the magnitude of the effect
size between predictor variables. All Landsat imagery
was normalized within image capture date (i.e., within
ETM� acquisition package) to observe relatively high
and low reßectance data within-Þeld instead of be-
tween Þelds.

Because within-Þeld, small extent knowledge was
our goal, each SS was treated as a data set to examine
within-Þeld differences in aphid densities (i.e., using
SS as a categorical variable standardizes the differ-
ences between the mean densities across SS.) The SS
categorical variable was included in every model in
the candidate model set. All subsets of the predictor
variables were linearly regressed against the depen-
dent variable (ln (aphid density) � 0.1).
Data Analysis. We used an information theoretic

approach to compare multiple hypotheses or models.
Examining multiple competing models reduces model
selection bias (Burnham and Anderson 2002) com-
pared with null model testing. Models and predictor
variables were evaluated based on the strength of
evidence in the data using the following statistical
tools: AkaikeÕs Information Criterion with a correction
for small sample sizes (AICc), �AICcr values (i.e., the
difference between the AICc value of the best model
and the AICc value of model r), and Akaike weights
(wr) (Burnham and Anderson 2002, 2004). AICc is the
appropriate information criterion when sample size is
small relative to the number of parameters (Burnham
and Anderson 2002) and produces more conservative
estimates of strength of evidence in high dimensional
models (Twombly et al. 2007).

We used a model averaging approach (i.e., multi-
model inference) because it is considered superior to
making model predictions and inferences about vari-
able importance based only on one best approximating
model when alternate models are nearly as well sup-
ported as the best approximating model (Burnham
and Anderson 2004). Models with a �AICc �7 were
selected for model averaging because they are con-
sidered to have some support of evidence for being the
best approximating model (Burnham and Anderson
2002).

AICc weights were used to assess the relative im-
portance of each predictor variable in explaining vari-
ation in aphid density (Adair 2005). Variable relative
importance weight w�(i) is the sum of the AICc
weights for predictor variable i over all models in
which predictor variable i occurs (Burnham and
Anderson 2004). The resultingw�(i) can range from 0
to 1. The more important predictor variables have
weights with higher values (e.g., given this data set,
variables that are more likely to correctly predict
aphid density will have weights close to 1). Because
w�(i)s are derived from AICc weights, w�(i) can be

interpreted as the likelihood of predictor variable i
being an important predictor variable for understand-
ing variation in D. noxia density. That is, variable
weights provide insight as to which variables are most
likely to be correlated with aphid densities.

Weighted average parameter estimates (��(i)) are
calculated by using AICc wrs in conjunction with
parameter estimates from each model in the model
selection set:

Formula 1: ��	i


� � wr * �r	i
. . . for all models r � 1 to R

where wr is the AICc weight for model r and �r(i) is
the parameter estimate for variable i in model r. In a
similar manner to determining a weighted parameter
estimate, upper and lower conÞdence limits were de-
veloped. That is, upper and lower conÞdence limits
were developed for each variable in each candidate
model. ConÞdence limit values were weighted and
summed based on AICcweights. These weighted con-
Þdence limits create unconditional conÞdence inter-
vals as described by Burnham and Anderson (2002).
Model Selection. To reduce the number of candi-

date models to a reasonable level (i.e., an all-subsets
approach would include a set of �69 billion models),
we followed a criterion-based, forward selection pro-
cedure for model selection (Faraway 2005, Twombly
et al. 2007). SS categorical variables were included in
every model because elucidation of within-Þeld vari-
ance was the goal. Variance inßation factors (VIFs)
and PearsonÕs pairwise correlation coefÞcients were
calculated for all predictor variables to test for colin-
earity (i.e., test for independence) (Proc Corr, SAS
2002Ð2003). During the forward selection procedure,
no variable was considered for inclusion if it was
highly correlated to a variable already included in the
model. Correlation can be measured by PearsonÕs pair-
wise correlation coefÞcients. Therefore, potential
variables to be added during the forward selection
procedure were limited to those without substantial
colinearity (i.e., models including any variables with a
PearsonÕs pairwise correlation coefÞcient �0.6 were
discarded).

A criterion based, forward selection procedure was
used for model selection (Twombly et al. 2007). Spe-
ciÞcally, each of the 36 variables was added to the null
model (i.e., the model with only the SS categorical
variables) to build 36 single-variable models. These
were Þt to measured Þeld density data using SAS 9.1,
Proc GLM (SAS 2002Ð2003), and AICc values were
computed for each single-variable model. If the �AICc
value of the single-variable models was greater than
2.0 compared with the null model, model selection was
Þnished. Otherwise, all models with �AICc�2.0 were
selected as the best single-variable model(s) (BSVM).
Then each of the remaining 35 variables was itera-
tively added to the BSVM(s) to build 35 two-variable
models for each BSVM model, excluding any variables
with high colinearity. If the �AICc value of the two-
variable models was greater than 2.0 compared with
the BSVM, model selection was Þnished. Otherwise,
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all candidate models with a �AICc�2.0 were selected
as the BTVM(s). Selection proceeded by iteratively
adding each of the remaining 34 variables to the
BTVM(s) to build candidate three-variable models.
This process was repeated to build four-variable mod-
els, Þve-variable models, etc., by adding any of the
remaining variables until �AICc values were �2.0
compared with the candidate model with the lowest
overall AICc. After which, candidate model selection
was Þnished. All models selected as candidate models
during the forward selection procedure were consid-
ered in the candidate model set.

After candidate models were selected, each model
was examined for exclusion from the candidate model
set based on the following criterion: removal of a
candidate model from consideration was based on the
conÞdence intervals (CIs) of parameterized variables
in each of the models. If any variable was parameter-
ized with 0 included in its 95% CI, the model was
discarded. That is, candidate models were removed if
they included a variable parameterized such that the
direction of its effect was in question (i.e., if the pa-
rameter value associated with a variable included both
positive and negative values in its 95% CI, then its
effect on D. noxia density could either be positive or
negative). Candidate models with a �AICc �7 were
selected for model averaging, That is, models with an
�AICc �7 have a very low probability of being se-
lected as the best approximating model given a similar
data set (Burnham and Anderson 2002) and were
therefore discarded.
Validation Using Site Specific Pesticide Applica-
tions. Precision agriculture assumes that cropping sys-
tems are not homogenous; therefore, there are ben-
eÞts to developing management units within which
important management factors are similar. Site spe-
ciÞc management units may be based upon a number
of factors, including expected yield or expected pest
densities. Pest management tactics could be focused
on site speciÞc management zones predicted to have
high pest densities, and eliminated from areas of the
Þeld predicted to have low pest densities. This ap-
proachcould reducepesticideapplicationbyreducing
the areas sprayed, resulting in all of the beneÞts as-
sociated with pesticide reduction (such as the cre-
ation of refuges for natural enemies). Observed den-
sities were divided into three management zones: high
risk, medium, risk and low risk for aphid damage.
Model results were validated by simulated spraying of
sites predicted by the model to have high aphid den-
sities and determining the correlation between
sprayed sites and observed D. noxia densities.
Trend SurfaceModels. The Raster Calculator func-

tion in ArcGIS 9.1 (ESRI 1995Ð2007) was used to
create trend surface models spatially delineating D.
noxia densities at the site level, using model-averaged
results.

Results

As expected, variance in observedD. noxiadensities
was large between sites, between years, and between

plots within sites. Variance between sites and between
years was controlled using the SS terms in the model,
allowing for parameterization of within site, between
plot differences. Densities ranged from a maximum of
49.5 aphids per tiller in April of 2004 at a plot in the
Lamar Þeld site to a frequently observed measurement
of zero aphids per tiller. The Lamar Þeld site had more
aphids on average (whole study average � 3.5 aphids
per tiller) than the Last Chance Þeld site (whole study
average � 0.81 aphids per tiller). The 2001Ð2002 win-
ter produced an average across both sites of 1.4 aphids
per tiller, 2002Ð2003 produced �1.0 aphid per tiller,
and 2003Ð2004 produced the high of �3.3 aphids per
tiller.A substantialproportionof theoverall 2003Ð2004
high can be attributed to the Lamar Þeld site (5.7
aphids per tiller on average during the 2003Ð2004
winter).

The three overwintering seasons saw relatively dry
conditions with temperatures within the normal
range. Winter temperatures ranged from a high of an
average daily temperature of �4�C for the Lamar Þeld
site from December 2003 to April 2004 to a daily
average of 0.9�C at the Last Chance Þeld site from
December 2001 to April 2002. No extremely harsh
conditions or prolonged cold snaps were observed
during the study. Precipitation ranged from a low of 2
cm in Last Chance during the 2001Ð2002 winter to �14
cm in Lamar during the 2003Ð2004 winter �10 cm of
which fell during one storm in late April. Snow cover
did not persist for over 40 d at either of the sites during
the study.
ModelSelectionandmodelAveraging.Eleven mod-

els (Table 1) had �AICc values �7. There were several
distinctive features associated with these models
based on the inclusion of important variables. None of
the models had �18 parameterized values. Therefore,
each would be considered relatively complex with a
potential for large errors. However, given the struc-
ture of the model averaging method (i.e., using
weighted results from all quality models), results be-
come more conservative. All 11 of the quality models
were averaged resulting in the Þnal model-averaged
formula: ln (D. noxia � 0.1) � �0.850 * SS1-1.348 *
SS2-0.477 * SS3-1.374 * SS4-0.501 * SS5-0.42 * SS6-
1.401 * SS7 � 0.285 * SS8-0.00 * SS9-0.691 * SS10-
0.282 * SS11 � 1.502 * NDVI(S) � 0.708 * Band3
(S) � 0.278 * Band8(W) � 0.019 * Band2(W) � 0.019 *
Band5(W) � 0.204 * Band3(W) � 0.797 * Baca �
0.51 * LAL � 1.312* Slope � 0.597 * R_Elevation
�1.159, where SSn is the categorical variable associ-
ated with the nth sampling date per site per year, and
R_Elevation is the relative elevation. Interpretation of
the above model-averaged formula is synonymous
with interpretation of any linear regression equation.
Variable Importance Results. Variable w�(i)s are

indicative of the predictor variableÕs importance in
determining aphid density, with higher variablew�(i)s
indicative of a strong likelihood for the variable ex-
plaining variation in aphid abundance. Because all of
the variables were normalized between zero and one,
they can be used to compare the relative magnitude of
the effect size of each predictor variable (Table 2).
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Table 2 provides the variable weight, parameter esti-
mates (effect size), and the upper and lower conÞ-
dence limits forallpredictorvariables.Fivevariableshad
large variable weights (w�(i)) and positive effects onD.
noxia density: NDVI (S) (w�(NDVI_S)� 1), Band 3 (S)
(w�(Band3S) � 1), slope (w�(Slope) � 1), and the soil
types LAL (w�(LAL) � 0.977) and Baca (w�(Baca) �
0.809). Relative elevation (w�(R_Elevation)� 0.928) had a
negative effect. That is, areas of the Þeld that are rela-
tively high (e.g., ridge tops) supported lower D. noxia
densities. Band 8 (W) (w�(Band8W)� 0.448) and Band
3 (W) (w�(Band3W) � 0.342) both had small relative
weights with a positive effect onD.noxiadensities. Band
5 (W) (w�(Band5W) � 0.034) and Band 2 (W)
(w�(Band2W) � 0.033) had very low relative weights,
making their effects negligible. The six variables with the
highestvariablew�(i)values[i.e.,NDVI(S), slope,Band
3 (S), Relative elevation, and the soil types LAL and
Baca] were included in most or all of the models with
largermodelweights, indicativeofa strong likelihoodfor
explaining variation in D. noxia density given similar
conditions. Band 8 (W) and Band 3 (W) were included
in a couple of the models with larger model weights, and
two variables (i.e., Band 5 (W) and Band 2 (W)) were
each included in only one low weight model.

GeneratingD. noxiaDensity Trend SurfaceModels
from Model-Averaged Results. The model-averaged
results for each sampling period were entered into the
Raster Calculator Function (ArcGIS 9.1, ESRI 1995Ð
2007) to create D. noxia density trend surface models
by using GIS layers associated with the important
predictor variables. D. noxia density trend surface
models can be depicted in a variety of ways. For
example, Fig. 1 depicts a continuous D. noxia density
surfaces for the Last Chance Þeld site based on data
from 25 April 2003. In addition, D. noxia density sur-
faces can be used to develop risk assessment maps,
which are maps that indicate areas that are at high,
medium, and low risk for aphid population expansions
with associated yield damages. Figure 2 is a risk as-
sessment map based on data from the 19 March 2004
sampling date at the Last Chance Þeld site.
Validation Using Simulated Site-Specific Pesticide
Application. The model averaged result has an R2

value of 0.35. Although the model explains a limited
proportion of the variance, it has substantial value in
using site-speciÞc pesticide applications. Plot density
data were partitioned into three management zones:
high, medium, and low predicted D. noxia density.
Simulated spraying of all of the plots predicted by the
model to be at risk for having high aphid densities (i.e.,
spraying 33.3% of the plots) resulted in 64% of the
observed high D. noxia plots sprayed. If the model-
predicted highest 50% of the plots were sprayed, the
proportion of observed high density plots being
sprayed was 79%, and if 70% of the plots were
sprayed �90% of the plots in the highD. noxia density
management zone would be sprayed. These results
show that simulated site speciÞc pesticide application
using model results would greatly reduce pesticide
inputs yet result in a large reduction in risk of crop loss
from aphid damage.
Spatial Autocorrelation. Residuals were examined

for spatial autocorrelation using MoranÕs i. The Mo-
ranÕs i value was found to be signiÞcant (MoranÕs i �
0.165, P � 0.0009) in the residuals indicative of an
additional signal in the data that has not been ex-
plained by the examined variables. That is, residuals

Table 1. Models included in the Model Averaging Procedure, where SS is the categorical variable sampling date per site per year

Model Variables AICc
a �AICc L (gr/data)b

AICc wr
normalizeda

1 SS, NDVI (S), Band 3 (S), Slope, Relative Elevation, LAL, Baca, Band 8 (W) 341.86 0.0000 1.0000 0.340
2 SS, NDVI (S), Band 3 (S), Slope, Relative Elevation, LAL, Baca, Band 3 (W) 342.08 0.2186 0.8964 0.304
3 SS, NDVI (S), Band 3 (S), Slope, Relative Elevation, LAL, Baca 343.92 2.0577 0.3574 0.121
4 SS, NDVI (S), Band 3 (S), Slope, Relative Elevation, LAL, Band 8 (W) 345.4 3.5449 0.1699 0.058
5 SS, NDVI (S), Band 3 (S), Slope, Relative Elevation, LAL, Band 3 (W) 346.26 4.4023 0.1107 0.038
6 SS, NDVI (S), Band 3 (S), Slope, Band 8 (W), Band 5 (W), LAL 346.44 4.5793 0.1013 0.034
7 SS, NDVI (S), Band 3 (S), Slope, Relative Elevation, LAL, Band 2 (W) 346.54 4.6832 0.0962 0.033
8 SS, NDVI (S), Band 3 (S), Slope, Relative Elevation, Baca 347.28 5.4270 0.0663 0.023
9 SS, NDVI (S), Band 3 (S), Slope, Baca, LAL 347.42 5.5598 0.0620 0.021
10 SS, NDVI (S), Band 3 (S), Slope, Band 8 (W), LAL 347.91 6.0519 0.0485 0.016
11 SS, NDVI (S), Band 3 (S), Slope, Relative Elevation, LAL 348.53 6.6730 0.0356 0.012

a AkaikeÕs Information Criterion for small sample sizes (AICc) and AICc weights (wr) quantify support in the data for each of the models
(Burnham and Anderson 2002).
b L(gr/data) is the likelihood of the model (gr).

Table 2. Variable importance and parameterization

Variable
AICc variable
wt (w�(i))

Parameter estimate
(95% CI)

NDVI (S) 1.000 1.502 (0.937, 2.067)
Band 3 (S) 1.000 0.708 (0.176, 1.240)
Slope 1.000 1.312 (0.712, 1.912)
LAL 0.977 0.510 (0.152, 0.868)
Relative Elevation 0.928 �0.597 (�1.054, �0.141)
Baca 0.809 0.797 (0.199, 1.395)
Band 8 (W) 0.448 0.278 (0.045, 0.510)
Band 3 (W) 0.342 0.204 (0.021, 0.387)
Band 5 (W) 0.034 �0.019 (�0.037, �0.001)
Band 2 (W) 0.033 0.019 (0.002, 0.036)
Intercept �1.159 (�1.796, �0.522)

Because variables have been normalized, parameter estimates yield
the magnitude of the variableÕs effect size and the direction of its
effect. Also included are the upper and lower conÞdence limits for the
parameter estimates.
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from the model are not spatially independent (this
could lead to elevated conÞdence in traditional hy-
pothesis testing were that being used). Although ex-
plained aphid density variance could be improved by
including this information (e.g., with a kriged layer),
the black box nature of inclusive use of spatial auto-
correlation in the residuals was deemed ill-advised for
a predictive model. However, this additional signal

provides promise for further reÞnement of this model.
That is, understanding that additional spatial autocor-
relation exists, future examination of alternative vari-
ables or examined variables at alternate scales may
lead to more accurate predictions.

Discussion and Conclusions

Application of a spatially explicit D. noxia density
model would have numerous beneÞts to the agroeco-
system and to the producer, including 1) reducing
pesticide inputs and associated costs, 2) reducing en-
vironmental contamination, 3) improving pesticide
resistance management, 4) reducing exposure to ag-
ricultural researchers, and 5) preserving refuges for
natural enemies. Moreover, an increased understand-
ing of variables that inßuence D. noxia density will
increase our management opportunities.

Variables with w�(i) values close to 1 can be con-
sidered good predictors ofD. noxia density and can be
used to delineate areas of differential D. noxia popu-
lation densities. Six variables have large w�(i) and are
likely to elucidate variation inD.noxiadensities: slope,
Band 3 (S), NDVI (S), relative elevation, and the soil
types LAL and Baca. Other variables have limited
support in the data.

Increasing the slope was observed to decrease aphid
mortality. This Þnding is consistent with work by
Hammon and Peairs (1992) who found that Þelds with
higher, steeper sloped irrigation beds had higher in-
festations than Þelds with lower or more shallow
sloped beds. Both NDVI (S) and Band 3 (S) detect
aspects of vegetation. Band 3 (S) may be detecting

Fig. 1. The modeled D. noxia density trend surface model for the Last Chance Field Site, 25 April 2003 sampling date.

Fig. 2. A risk assessment map based on the D. noxia
density trend surface model for the Last Chance Field Site,
19 March 2004 sampling date. White circles represent plot
locations.
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differences in chlorophyll absorption directly relating
to symptomatic changes caused by aphid feeding (e.g.,
streaking or chlorosis [e.g., Fouche et al. 1984]). Or
Band 3 (S) and NDVI (S) may simply describe areas
where aphid hosts are located and hence, could and
conversely could not survive (e.g., winter wheat ver-
sus bare soil). Relative elevation was a strong predic-
tor of D. noxia density, possibly because areas of low
relative elevation may have increased snow accumu-
lation, which has been correlated to overwintering
success (Armstrong and Peairs 1996). Similarly soil
types, with their associated differences in soil color
and texture could affect snow accumulation (e.g., al-
bedo affects), soil moisture availability, and temper-
ature on a microclimatic scale.

Seven of the top 11 models included at least one of
the Landsat 7 ETM� winter bands. Most of these
bands are highly correlated (i.e., the lowest PearsonÕs
pairwise correlation of r� 0.29 is seen between Band
5 (W) and Band 8 (W), with a pairwise average be-
tween winter Bands 2, 3, 5, and 8 of r � 0.57). Of the
included winter Landsat imagery, Band 5 (W) is the
only emissive band with a negative effect. However,
Band 5 (W) is only included in a single model, which
also includes Band 8 (W). In this model, Band 8 (W)
has a stronger positive effect than the negative effect
ofBand5(W).Band2(W),andBand3(W)bothhave
positive effects on D. noxia density. Therefore, it
seems that an increase in reßectance during the winter
detected by many of the winter Landsat Imagery
bands is indicative of a positive effect on D. noxia
densities. Surprisingly, some of the predictor variables
(e.g., aspect) that were thought to have the strongest
support from previous research (e.g., Hammon and
Peairs 1992) were not supported as quality predictors
during this model selection process. Variables may not
have been selected or have a low weight for a number
of possible reasons: 1) The scale at which they were
measured (i.e., aspect was measured at a 30-m grain
size) did not correspond to the scale at which they
affect the dependent variable; 2) the signal that re-
lated the predictor variable to D. noxia density was
detected more strongly by another variable (using the
model framework, this correlation may have removed
oneof thevariables fromthedata set); 3) thepredictor
variable was not a good indicator ofD. noxia densities;
or 4) the data were biased, reducing the effect size of
the variable. Although temperature and precipitation
have been shown to be important variables in broad-
scale patterns of overwintering success (Armstrong
and Peairs 1996), many of the factors that could in-
ßuence D. noxia abundance and density on a smaller
scale (e.g., soil characteristics) had not been explored
previously.

Important variables were used in conjunction with
a GIS to build D. noxia density maps on a 30-m grid
scale (e.g., Figs. 1 and 2). These maps could have a
variety of functions such as tools for directed scouting.
In combination with directed scouting, maps may be
used to limit pesticide applications to areas of the
agroecosystem delineated as having highD.noxiaden-

sities (above the economic threshold), thus reducing
pesticide usage with all of the associated beneÞts.

Given the large variance associated with insect pop-
ulations, a model that explains a major proportion of
the variance (R2 � 0.35) has value. However, this
model includes variation that may be caused by dif-
ferential effects of natural enemies across the land-
scape. Although biocontrol efforts have not been
shown to be highly effective in Colorado (e.g., Ran-
dolph et al. 2002), it seems unlikely that natural ene-
mies have uniform effects across the aphidÕs environ-
ment or at the same scale as studied here.
Development of an additional model or GIS layer for
D. noxia natural enemies might greatly increase the
variability explained. That is, there may be areas of the
Þeld that are favorable for aphid predation and con-
versely favorable for predator avoidance by the
aphids. Developing a spatially explicit predator prey
model might greatly enhance our ability to spatially
predictD. noxiadensities, and provide information for
more efÞcient placement of natural enemy refuges.
Other variables, such as alternate vegetation indices
(e.g., soil-adjusted vegetation index), may explain ad-
ditional variation in aphid density. However, post hoc
analysis of additional variables was deemed ill-advised
for use in a predictive model. Data were collected
from winter wheat Þelds that were heavily infested at
a uniform rate. Different infestation rates (e.g., natural
infestations), different crops, and environmental con-
ditions outside of the range tested in this study may
produce different results. However, the exceptional
promise shown by the modelÕs ability to predict aphid
density could allow for drastic reduction in pesticide
usage and thereby promote a more judicious inte-
grated pest management strategy, which could pro-
vide all of the beneÞts associated with pesticide re-
duction. Moreover, increasing our understanding of
the variables that are important to D. noxia overwin-
tering success will lead to an increased ability to de-
velop future aphid population dynamic models and
hypotheses.
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